[Quiz 1 in-class on Jan 25.]

Goal: iR is a complete ordered field.

Completeness Property: Every \$ \$ \$ R which is bounded above must have a supremum in R. [Note: Q fails this!]

Last time, we proved:

Prop: u = sup S iff

(i.e. u is an upper bd)

② ∀ € > 0 , ∃ s' ∈ S s.t. u - € < S' (i.e. u is the Smallest upper bd.)

Similarly. for infimum, we have:

Prop: u = inf S iff

① s > u , ∀ s ∈ S (i.e. u is an lower bd)

(i.e. u is the greatest lower bd.)

Q: What about the existence of infimum?

A: It follows from the completeness property.

Prop: Every $\phi + S \subseteq \mathbb{R}$ that is bounded below must have an infimum in \mathbb{R} .

Proof: Given $\phi + S \subseteq \mathbb{R}$, consider the subset:

$$\phi \neq \overline{S} := \{ -s \mid s \in S \} \subseteq \mathbb{R}$$

Claim: 5 is bdd above.

Pf of Claim:

Since 5 is bdd below, i.e.

3 some lower bd. u of S

By Completeness Property, sup 5 exists in R.

Claim: inf 5 exists. inf 5 = - sup 5.

Pf of Claim:

Cheek: - sup 5 is a lower bd for 5

This is the same by reversing the arguments of the Claim above.

Check: - sup & & the greatest lower bd for 5

Let E>0 be fixed but arbitrary.

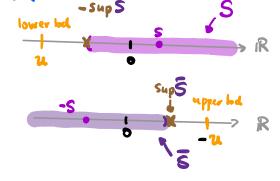
(Want to Show: 3 s'& S st. -sup \$ + & > s') - (*)

By @ of supremum for 5,

sup 5 - E < 5' for some 5' E S

By def^{n} , we write $\overline{s}' = -s'$ for some $s' \in S$

So. sup S - E < - s' => - sup S + E > s' for some s'E S which is (*)



Archimedean Property: IN is NOT bold above.

Pf: Suppose NOT, ie. IN is bad above.

By Completeness Property, supIN =: u e R exists.

So, u-1 < n' for some n'EN.

$$\Rightarrow$$
 $u < n' + 1 \in N$

=> u is NOT an upper bd for IN Contradiction!

1 1 1 1 1 NR

Corollaries:

(i)
$$\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = 0$$

(ii)
$$\forall \xi > 0$$
, $\exists n \in \mathbb{N}$ st. $0 < \frac{1}{n} < \xi$

Ex: Prove these!